openPose 설치 및 구동 (ubuntu 16.04 + 1080)


CMU의 유명 프로젝트인 딥러닝 기반 openPose 구동에 대해서 다룬다.
영상 자동 tagging시 유용하게 쓸 수 있는 오픈 코드인것 같다.

openPose 논문 리스트

  • CVPR17, Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
  • CVPR16, Hand Keypoint Detection in Single Images using Multiview Bootstrapping
  • CVPR16, Convolutional pose machines

코드
github 주소

설치

설치 컴퓨터는 한성컴퓨터 보스몬스터 (NVIDA 1080) 스팩은 아래와 같다.
구매시기: 2017.1월, 200만원

코드 다운
git clone https://github.com/CMU-Perceptual-Computing-Lab/openpose.git

종속 프로그램 설치

  • sudo apt-get install cmake-qt-gui설치 make 위해서 visual configuration을 하기 위함이다.
  • CUDA 8 cuDNN 5.1설치. cuDNN까지 설치해야 Deep Learning 작업시 속도가 빠르다. CUDA 9.0까지 나와 있으니 버전을 잘 맞춰서 설치
    • sudo ./install_cmake.sh해당 스크립트로 설치 가능
  • Caffe 설치: sudo ./install_cmake.sh
  • OpenCV 설치: sudo apt-get install libopencv-dev

설정을 통한 Makefile 생성

Console에서 cmake-gui를 입력

아래와 같은 설정 창이 나온다.

  • where is the source code 부분에 openpose root 디렉토리를 설정
  • where to build the binaries 부분에 build 디렉토리 설정
  • configure버튼을 누르고 Unix Makefile로 선택한다.
  • Finish 버튼을 누르면 아래와 같이 진행된다.

  • generate버튼을 한번 더 누른다. done이 나오면 성공

아래와 같이 처음에 git clone으로 코드만 다운받고 설치만 하면 build디렉토리에 Makefile이 없다. 이제 정상적으로 생성 되어있다.

make -j 8을 실행해서 컴파일 한다. (8은 가능한 process 숫자이다.)

컴파일 성공

데모 실행 결과

quick-start 가이드에 따라서 한번 실행해 본다.

빌드가 성공해야만 build/examples/openpose/openpose.bin파일이 생성되어 있다.

비디오 실행 명령어

# Ubuntu
./build/examples/openpose/openpose.bin --video examples/media/video.avi
# With face and hands
./build/examples/openpose/openpose.bin --video examples/media/video.avi --face --hand

아래는 그냥 포즈만 디텍션한 것으로 1080에서 10 FPS까지 나온다.

아래는 얼굴 을 포함한 것으로 급격히 떨어져서 1.4 FPS가 된다.

두 동영상 예제를 실행 했을 때의 GPU load를 측정한 것이다.
GPU 메모리는 1.7GB 사용하고 GPU-Util 80~90%정도 점유된다.


'AI > Caffe' 카테고리의 다른 글

Faster R CNN Training  (0) 2017.02.27
Faster-R-CNN Install on Ubuntu 16.04(GTX1080 CUDA 8.0,cuDNN 5.1)  (4) 2017.02.26

+ Recent posts