Upgrade CUDA and cuDNN
Remove old version
If your graph drvier supports desire CUDA version, do not need to remove the exsiting driver.
Check the following link: https://docs.nvidia.com/deploy/cuda-compatibility/index.html
To remove CUDA Toolkit:
$ sudo apt-get --purge remove "*cublas*" "*cufft*" "*curand*" \
"*cusolver*" "*cusparse*" "*npp*" "*nvjpeg*" "cuda*" "nsight*"
To remove NVIDIA Drivers:
$ sudo apt-get --purge remove "*nvidia*"
To clean up the uninstall:
$ sudo apt-get autoremove
From offical document: https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
Donwload and Install CUDA and cuDNN
CUDA
During the installation, uncheck graph driver.
# runfile(local)
wget https://developer.download.nvidia.com/compute/cuda/11.0.3/local_installers/cuda_11.0.3_450.51.06_linux.run
sudo sh cuda_11.0.3_450.51.06_linux.run
Environment Variable Setting
vim ~/.bashrc
export PATH=/usr/local/cuda-11.1/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.1/lib64:$LD_LIBRARY_PATH
Version Check
nvcc --version
Install cuDNN
The following instruction is based on zip file of linux version.
$ sudo cp cuda/include/cudnn*.h /usr/local/cuda/include
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
$ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
Conda cudatoolkit의 차이점conda install cudatoolkit
으로 설치된 library는 apt install로 설치된 것과는 다르지만 PyTorch
등의 DL Framework
에서 필요로 하는 부분들은 모두 담고 있다.nvcc compiler
는 따로 설치 되지 않으므로 필요할 경우 cudatoolkit
을 모두 설치해야 할 수 있음.
Check version
# Before cuDNN 8.x
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
# After cuDNN 8.x
cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2
dpkg 설치시
dpkg -l | grep cuDNN
ii libcudnn8 8.1.0.77-1+cuda11.2 amd64 cuDNN runtime libraries
ii libcudnn8-dev 8.1.0.77-1+cuda11.2 amd64 cuDNN development libraries and headers
ii libcudnn8-samples 8.1.0.77-1+cuda11.2 amd64 cuDNN documents and samples
dpkg -l | grep CUDA
Change cuDNN version
$ sudo update-alternatives --config libcudnn
There is 1 choice for the alternative libcudnn (providing /usr/include/cudnn.h).
Selection Path Priority Status
------------------------------------------------------------
0 /usr/include/x86_64-linux-gnu/cudnn_v8.h 80 auto mode
* 1 /usr/include/x86_64-linux-gnu/cudnn_v8.h 80 manual mode
'AI > NVIDIA' 카테고리의 다른 글
TensorRT 개론 및 Docker기반 실행 (0) | 2021.02.04 |
---|---|
TensorRT이용한 Xavier DLA (NVDLA) 실행 (4) | 2019.02.08 |
NVDLA: NVIDIA Deep Learning Accelerator (DLA) 개론 (0) | 2019.02.08 |
NVIDIA AI Tech Workshop at NIPS 2018 -- Session3: Inference and Quantization (0) | 2019.02.06 |
DeepStream을 통한 low precision YOLOv3 실행 (0) | 2019.01.24 |